

Page 1 of 19

Enabling a tailor-made
Modeling Environment

for your Enterprise Architecture

By Thomas Wiman

Product Manager for MetaModelAgent

thomas.wiman@adocus.com

Abstract

This document gives an example on how to use Eclipse Papyrus and

Adocus MetaModelAgent for setting up a domain-specific modeling

environment which will support web publishing and model analytics.

The document refers to Enterprise Architecture modeling but the

principals described in this document can be applied on any modeling

domain.

Page 2 of 19

Content

Introduction ... 3

The example domain ... 3

Section I: Create and Deploy Your Own Domain-Specific Language .. 4

Step 1: Define a conceptual model of the domain-specific concepts and relations 4

Step 2: Define the mapping of domain-concepts to UML-items .. 5

Step 3: Define the metamodel to be used by MetaModelAgent .. 7

Step 4: Deploy your domain-specific modeling tool and start modeling .. 8

Section II: Use Your Own Domain-Specific Language .. 9

Model organization ... 9

Domain-specific guidance ... 9

Creating new model elements and relationships .. 10

Adding diagrams .. 11

Editing existing elements and relationships .. 12

Violation Monitoring ... 12

Publishing a model and corresponding guidelines .. 13

Section III: Analyze Your Own Domain-Specific Models.. 15

Property overviews ... 15

Relationship overviews.. 15

Traceability chains ... 16

Dashboards .. 17

Try it Yourself!.. 18

References ... 19

Page 3 of 19

Introduction

You are probably working as an enterprise architect, business architect or system architect in a large or

mid-size organization. You are in need of establishing a common way to architect, design and document

your domain of concern with your already established concepts, terms, rules and constraints.

You really would like to have a modeling tool environment that enforces compliancy with your specific

domain, but still compatible with standards, such as UML, for interoperability and flexibility.

You find the modeling tools on the market to be too general or too comprehensive and complex to

customize for your own need, or too expensive for your budget. Developing your own tool is certainly

not an option.

This paper presents how you easily can achieve a domain-specific modeling tool environment based on

Eclipse Papyrus extended with Adocus MetaModelAgent and how it can be used for modeling, model

analytics and publishing.

Eclipse Papyrus [1] is an open-source UML-modeling tool based on the Eclipse-platform with extra-

ordinary support for customizations and extensions. MetaModelAgent [2] is an extension to Papyrus

that makes it possible to define and apply domain-specific modeling without any need of programming.

MetaModelAgent also provides model analysis and web-publishing capabilities.

The benefits of using UML as the underlying representation for domain-specific languages is its rich set

of elements and relationships with predefined semantics, static and dynamic diagrams for visualizing

structure as well as behavior and support for language extensions.

This paper is divided into three sections:

• Section I describes how you in a few steps can define your own modeling language and create

a modeling tool environment that is customized to your own domain.

• Section II demonstrates the domain-specific modeling features you can expect from the tool

environment when you have deployed your domain-specific language

• Section III presents an overview of the model analysis capabilities in Adocus

MetaModelAgent

The complete example used in this article can be downloaded and opened in Eclipse Papyrus extended

with MetaModelAgent.

As an alternative to Papyrus, IBM Rational Software Architect Designer [3] can be used together with

MetaModelAgent with exactly the same functionality and user experience.

The example domain

To not confuse you with a specific kind of architecture, I will use a completely different domain is this

paper.

Let’s say that you want to capture some information about countries and their major cities and different

alternative ways to travel between those cities such as by road, railway, or waterway. For railways and

waterways, the available operators are also of interest. I call this domain Cities and Connections.

It is not a typical domain to model, and probably not very useful in practice. But it is a suitable domain

for demonstrating the capabilities in the modeling tool environment, as probably anyone can relate to

this domain.

I hope that this paper and the example domain will give you an understanding what the proposed tool

environment can do for your own domain.

Page 4 of 19

Section I: Create and Deploy Your Own Domain-Specific

Language

This is about defining a domain-specific modeling language for your modeling domain. This is done in

four steps which are described in this section. If your domain is large and complex, I would

recommend iterating around these four steps, including deployment and practical use, until the whole

domain is covered.

Step 1: Define a conceptual model of the domain-specific concepts

and relations

In our example domain, “Cities and Connection”, the following holds: Countries consists of Cities.

Cities are connected by Roads, Railways and Waterways and there are Ferry Operators that operates on

the Waterways and Train Operators that operates on Railways. Ferry Operators as well as Train

Operators are registered in one of the Countries it operates from.

Interesting information to capture is the area and population of Countries, the population of a city and

whether a city is a capital or not. Each kind of connection has an estimated travel time and for roads

there is of interest to know the distance between the connected cities, the type of road and if it is a toll

road or not. For Ferry and Train Operators, the addresses to their websites are of interest.

This will end up in the conceptual model displayed below as a class diagram in standard UML, where

some abstract concepts (Physical Place, Connection and Transport Operator) have been introduced to

consolidate common characteristics.

Conceptual Model of Cities and Connection Domain

In an architectural context the concept model will contain all your architectural concepts such as

Business Process, Activity, Information Item, Organization Unit, System, Application, Component,

Page 5 of 19

Subsystem, Module, Interface etc., and all the different kind of relationships that are relevant to keep

track of in your architecture.

Step 2: Define the mapping of domain-concepts to UML-items

As all the concepts should be handled in a UML-model, each concept should be mapped to a UML-

element or relationship. Preferable, UML-standard semantics should be respected, and the final mapping

have to be consistent with UML-semantics.

UML-Profile (Abstract Syntax)
Based on the mapping, a UML-profile [5] is created with a stereotype for each concrete concept, this is

also known as Abstract Syntax. Icons are assigned to each stereotype to give a better visual cue of the

concepts in the UI of the modeling tool.

The table below shows how the domain concepts in the example domain are mapped to UML-items

(elements and relationships).

Mapping of domain concepts to UML

You may observe that the concept Continent has been added to the profile to represent the root element

in a model.

To capture interesting information about each concept, standard properties on the UML-items are

preferred. If standard properties are not sufficient, domain-specific properties are defined by adding

attributes to the stereotypes in the profile. The final UML-profile for the Cities & Connections domain

lokes like this:

UML Profile

Page 6 of 19

You may notice that in the UML-profile above, there is no property defined for holding the reference

from a Waterway to Ferry Operators, neither from a Railway to Train Operators, the reason is that

Information flows has a standard property named Conveyed which has been decided to be good enough

for holding this kind of references.

Diagram CSS-Stylesheet (Concrete Syntax)
In Eclipse Papyrus, the appearance of elements and relationships in a diagram, also known as concrete

syntax, can be controlled by cascading style sheet (CSS) files [6], analogue with styling web pages using

CSS-files. For that reason, a CSS-stylesheet has been developed for the Cities & Connections domain,

here is a small excerpt from that stylesheet:

CSS Stylesheet

As seen in the CSS-file above, a stylesheet can refer to vector-based graphics in SVG-files to be used

as element symbols in diagrams, overriding standard UML-symbols. For our domain SVG-graphics

have been added to represents Cities, Train Operators and Ferry Operators:

SVG Graphics

Page 7 of 19

Step 3: Define the metamodel to be used by MetaModelAgent

So far, we have defined a UML-profile with stereotypes and stereotype attributes representing domain-

specific concepts and interesting information, with associated icons and a CSS-stylesheet for diagram

representation. This is actually all artifacts needed to model our domain in Eclipse Papyrus.

But what about constraining the ways our domain models can be constructed and ensuring compliancy

to the domain-specific language? Of course, you can add some complex OCL-constraints to your

stereotypes and run some batch validation. But it would be much better if the tool’s UI could enforce a

correct usage of all the concepts and guide the user to create correct domain-specific models.

This is where MetaModelAgent from Adocus comes to play. MetaModelAgent provides a UML-based

metamodel notation [7] where the one that is responsible for the domain easily can define all the rules

and constraints that ate related to the domain.

Based on the metamodel, MetaModelAgent can then, without need for any programming, provide a

domain-specific UI to the user. The UI will include domain-specific menus, views, wizards, and tool

palettes that supports the user in creating domain-specific models that are compliant to all the rules and

constraints.

The concept of MetaModelAgent

The metamodel can be regarded as a refined and extended conceptual model:

• A Class represent a metaclass and defines the kind of UML-element to use for a specific

concept.

• A Class Attribute represents a significant property for the concept represented by the

metaclass and defines constraints on the property’s value.

• A Composite Aggregation relationship between metaclasses defines the valid model

structure.

The metamodel notation supported by MetaModelAgent is very comprehensive and can capture almost

any kind of rules and constraints that holds in a domain.

Below you have an excerpt of the metamodel for the Cities and Connectors domain.

Page 8 of 19

Metamodel of Cities & Connections domain-specific language

Besides defining all rules and constraint of your domain-specific modeling language in the metamodel,

you can also add guidance in terms of textual documentation to all metaclasses and metaclass attributes.

The guidance will then appear in a guidance view, wherever you select an item or a property anywhere

in the UI.

Step 4: Deploy your domain-specific modeling tool and start modeling

There are at least two alternatives to deploy your domain-specific modeling language (UML-profile,

CSS-stylesheet, Graphics and Metamodel) in Papyrus.

• All the artifacts can be put into an Eclipse Project that is imported to each user’s workspace.

This is the preferred variant during testing and with few users as it is very agile where changes

can be made without restarting the tool session.

• All the artifacts can be included in an Eclipse-plugin that is referred by an Eclipse Feature and

provided as an update site for all users to install. This is the preferred variant when the

included artifacts are stable and there are a lot of users. How to deploy your domain-specific

language in a plugin, feature and update site is outside the scope for this article. Details can be

found in ref [8].

Page 9 of 19

Section II: Use Your Own Domain-Specific Language

To demonstrate the “Cities and Connection” modeling language, an example model has been developed

which covers major cities and connections in Northern Europe. The example model is not exhaustive at

all and there is no guarantee that the information within the model is correct.

In this section you will find screenshots of how this example model looks like in Eclipse Papyrus

extended with Adocus MetaModelAgent.

Model organization

The Papyrus Model Explorer will display all content of the model with domain-specific icons and the

concept terms as suffix.

Papyrus Model Explorer

In an architectural context the Model Explorer will display the organization and decomposition of all

architectural elements and their relationships.

Domain-specific guidance

The MetaModelAgent Guidance View will explain all domain-specific concepts selected in the UI. The

explanations displayed have been added as metaclass and metaclass attribute documentation in the

metamodel.

Page 10 of 19

MetaModelAgent Guidance View

The quality of the guidance will depend on the effort put into describing each concept. If you have

architectural concepts that are new or complex for the modelers, you should put extra attention in

providing good explanations. As this view is an embedded web-browser the guidance can embed any

kind of multimedia such as pictures, sound and videos.

Creating new model elements and relationships

New elements can be created from a domain-specific context menu in the Model Explorer View or by

using the domain-specific section of the diagram editor palette. Relationships are added using the

domain-specific context menu in the diagram editor. In all cases, the MetaModelAgent Add Wizard will

pop-up to guide the user in adding correct property values for the element or relationship.

Page 11 of 19

MetaModelAgent Add Wizard

The Add Wizard will be unique for each concept, only focusing on those significant properties that have

been defined in the UML-profile and in the metamodel. By providing live validation of entered values,

the model can be sure to create items that are consistent with the metamodel.

Adding diagrams

In the Papyrus Diagram editor, you will be able to visualize your concepts and relations styled by the

CSS-stylesheet.

Diagram of countries, cities, and connections

Diagram of Countries and Travel operators

Page 12 of 19

In an architectural context, these kinds of diagrams can be used to visual the architectural decomposition

and at the same time display significant relationships between architectural building blocks. UML

sequence diagrams, activity diagrams and state-machine diagrams can be used to visualize architectural

behavior. Normally several diagram will be needed to express different viewpoints of the architecture.

Editing existing elements and relationships

The MetaModelAgent Property view will display only significant properties as defined in the

metamodel for the element or relationship selected in the UI. Property values are validated as they are

typed in, against defined constraints in the metamodel.

MetaModelAgent Property View

When editing already created items you will have the same kind of support as in the Add Wizard to

enter valid property values only. Any other value will be indicated by colored background and

decoration indicating the severity.

Violation Monitoring

Even when using domain-specific wizards and property view, you may end up in incorrect or incomplete

constructions. The MetaModelAgent Problem View will highlight all outstanding violation against the

metamodel in a spreadsheet view that also provides quick fixes whenever possible.

MetaModelAgent Problem View

Page 13 of 19

Publishing a model and corresponding guidelines

A model is often consumed by stakeholders not directly involved in the modeling task. They will

therefor normally not have access to the modeling tool: Even if they have access, the modeling tool

may be too complex to use for their needs. To be able to consume a model in a simpler way is an

important requirement from them.

MetaModelAgent comes with a web site generator that can generate a stand-alone static model report

website of one or several models with some unique cross-reference facilities and search capabilities.

Web published Model Report

Besides publishing a web site of user models. MetaModelAgent can also publish a guideline report

website of the metamodel holding the definition of the domain-specific language. That website could be

seen as a reference manual of the domain-specific language and will reduce the needed for additional

language documentation.

Page 14 of 19

Web-published Guideline report based on metamodel

If you choose, both the model report website and its corresponding guideline report website can be

integrated with each other making the concept definition being available within a mouse-click when

navigating the elements in the model.

Page 15 of 19

Section III: Analyze Your Own Domain-Specific Models

Beside the domain-specific modeling capabilities that are provided by Eclipse Papyrus together with

Adocus MetaModelAgent, MetaModelAgent also provides some advanced model analytics features [10]

where several of them are never seen before in a modeling tool.

Property overviews

The interactive MetaModelAgent Property Table View will display all occurrences of a selected concept

together with values of all significant properties in an editable spreadsheet layout. This view also

provides bulk editing and export to comma-separated files.

MetaModelAgent Property Table View

In an architectural context, the Property Table View will make it really easy to get an overview of all

properties for all architectural elements of the same kind. The export capabilities make it easy to transfer

data to Excel for further post-processing.

Relationship overviews

The interactive MetaModelAgent Trace Matrix View lets you display a variety of relationship-related

information in a matrix-style layout. The view can display direct relationships as well as composite

relationships, including state machine transitions and activity flows. Redundancies as well as circular

relationship chains will be highlighted in this view.

Page 16 of 19

MetaModelAgent Trace Matrix View

In an architectural context, the Trace Matrix View will make it easy to see which architectural elements

that are related directly or indirectly to each other. For indirect relationships, the total distance will be

indicated by color. As the figure below shows, it can also be used on an aggregated level, where a filled

cell indicates that there are relationships between underlying elements on a lower level.

MetaModelAgent Trace Matrix View (Transitive mode)

Traceability chains

The interactive MetaModelAgent Trace Tree View let you display relationship chains by following a

specific kind or relation or all kind of relations between selected source and target element, either

forward or backward. This view will also display state machine transition paths and activity flow paths.

Page 17 of 19

MetaModelAgent Trace Tree View

In an architectural context the Trace Tree View can give you the long-awaited traceability viewpoint

crossing all architectural layers and tiers.

Dashboards

The interactive MetaModelAgent Chart View can display a variety of information about nested and

related elements as well as distribution of property values for a specific kind of items.

The Bar chart below displays number of directly nested elements (cities and transport operators) for

each country.

MetaModelAgent Bar Chart View

In an architectural context the Chart View can, among others, reveal the largest architectural elements,

and those that has the highest number of dependent elements.

The scatter chart below displays an overview of cities complexity in terms of number of incoming and

outgoing connections.

Page 18 of 19

MetaModelAgent Scatter Chart View

The Chart View can be used as a dashboard providing management views and executive summaries of

the architecture being modeled.

Try it Yourself!

You are only a few steps away from exploring all the capabilities in Papyrus and MetaModelAgent in

your own MS Windows, Linux or MacOS environment.

1. Download and install Eclipse Papyrus using the instructions at

www.metamodelagent.com/papyrus_installation.html.

2. Download and install Adocus MetaModelAgent to your running Eclipse Papyrus environment

using the instructions at: www.metamodelagent.com/get_started.html, where you also will find

instructions on how to obtain a limited free license or a time-limited evaluation license.

3. Download and install the Cities and Connections example used in this paper, using the

instructions at www.metamodelagent.com/download.html#demos.

For more information about Papyrus and MetaModelAgent, or if you have any question or comments

about this paper, please send a mail to thomas.wiman@adocus.com.

http://www.metamodelagent.com/papyrus_installation.html
http://www.metamodelagent.com/get_started.html
http://www.metamodelagent.com/download.html#demos
mailto:thomas.wiman@adocus.com

Page 19 of 19

References

[1] Open-source Eclipse Papyrus

https://www.eclipse.org/papyrus

[2] Adocus MetaModelAgent

http://www.metamodelagent.com

[3] IBM Rational Software Architect Designer

https://www.ibm.com/us-en/marketplace/rational-software-architect-designer

[4] Papyrus User Guide

https://wiki.eclipse.org/Papyrus_User_Guide

[5] About UML-profiling in Papyrus

https://www.eclipse.org/papyrus/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0

_d20120606.pdf

[6] CSS-Stylesheets for Papyrus diagrams

https://wiki.eclipse.org/MDT/Papyrus/UserGuide/CSS

[7] MetaModelAgent Metamodeling

http://www.metamodelagent.com/documentation/MetaModelAgent_MetaModeling.pdf

[8] Eclipse IDE Plugin Development

https://www.vogella.com/tutorials/EclipsePlugin/article.html

[9] MetaModelAgent Modeling User Manual

http://www.metamodelagent.com/documentation/MetaModelAgent_UserManual.pdf

[10] MetaModelAgent Model Analysis Manual

http://www.metamodelagent.com/documentation/MetaModelAgent_ModelAnalysis.pdf

[11] The complete “Cities and Connection” example (zipped Eclipse project)

http://www.metamodelagent.com/demos/cities_and_connections_dsml_demo.zip

https://www.eclipse.org/papyrus
http://www.metamodelagent.com/
https://www.ibm.com/us-en/marketplace/rational-software-architect-designer
https://wiki.eclipse.org/Papyrus_User_Guide
https://www.eclipse.org/papyrus/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
https://www.eclipse.org/papyrus/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
https://wiki.eclipse.org/MDT/Papyrus/UserGuide/CSS
http://www.metamodelagent.com/documentation/MetaModelAgent_MetaModeling.pdf
https://www.vogella.com/tutorials/EclipsePlugin/article.html
http://www.metamodelagent.com/documentation/MetaModelAgent_UserManual.pdf
http://www.metamodelagent.com/documentation/MetaModelAgent_ModelAnalysis.pdf
http://www.metamodelagent.com/demos/cities_and_connections_dsml_demo.zip

	Introduction
	The example domain

	Section I: Create and Deploy Your Own Domain-Specific Language
	Step 1: Define a conceptual model of the domain-specific concepts and relations
	Step 2: Define the mapping of domain-concepts to UML-items
	UML-Profile (Abstract Syntax)
	Diagram CSS-Stylesheet (Concrete Syntax)

	Step 3: Define the metamodel to be used by MetaModelAgent
	Step 4: Deploy your domain-specific modeling tool and start modeling

	Section II: Use Your Own Domain-Specific Language
	Model organization
	Domain-specific guidance
	Creating new model elements and relationships
	Adding diagrams
	Editing existing elements and relationships
	Violation Monitoring
	Publishing a model and corresponding guidelines

	Section III: Analyze Your Own Domain-Specific Models
	Property overviews
	Relationship overviews
	Traceability chains
	Dashboards

	Try it Yourself!
	References

