General UML Guidelines State Machines Pseudo States Exit Point (Pseudo State)
General UML Guidelines State Machines Pseudo States Exit Point (Pseudo State)
An exit point pseudostate is an exit point of a state machine or composite state. Entering an exit point within any region of the composite state or state machine referenced by a submachine state implies the exit of this composite state or submachine state and the triggering of the transition that has this exit point as source in the state machine enclosing the submachine or composite state.
Determines the precise type of the Pseudostate.
The name of the item.
A keyword is a lightweight variant of a stereotype to extend the semantics of a model element. As opposite of stereotypes, keywords does not have do be defined in a profile.
If several keywords are given, they should be separated by commas.
A stereotype defines how a model element may be extended, and enables the use of platform or domain specific terminology or notation in place of, or in addition to, the ones used for the extended metaclass.
Stereotypes should be given in the format 'profile::stererotype'. Stereotypes should be separated by commas.
A textual description of the element.
Determines where the item appears within different Namespaces within the overall model, and its accessibility.
An element of one of the following kinds:
A special kind of state signifying that the enclosing region is completed.
If the enclosing region is directly contained in a state machine and all other regions in the state machine also are completed, then it means that the entire state machine is completed.
A protocol state machine is always defined in the context of a classifier. It specifies which operations of the classifier can be called in which state and under which condition, thus specifying the allowed call sequences on the classifier's operations.
A protocol state machine presents the possible and permitted transitions on the instances of its context classifier, together with the operations which carry the transitions. In this manner, an instance lifecycle can be created for a classifier, by specifying the order in which the operations can be activated and the states through which an instance progresses during its existence.
A region is an orthogonal part of either a composite state or a state machine. It contains states and transitions.
A state models a situation during which some (usually implicit) invariant condition holds.
The states of protocol state machines are exposed to the users of their context classifiers. A protocol state represents an exposed stable situation of its context classifier: when an instance of the classifier is not processing any operation, users of this instance can always know its state configuration.
State machines can be used to express the behavior of part of a system.
Behavior is modeled as a traversal of a graph of state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of series of (event) occurrences. During this traversal, the state machine executes a series of activities associated with various elements of the state machine.
An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different levels of abstraction or from different viewpoints.
A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their specification or implementation.
This means that the complete semantics of the depending elements is either semantically or structurally dependent on the definition of the supplier element(s).
An information flow specifies that one or more information items circulates from its sources to its targets.
Informationflows require some kind of information channel for transmitting information items from the source to the destination. An information channel is represented in various ways depending on the nature of its sources and targets. It may berepresented by connectors, links, associations, or even dependencies.
For example, if the source and destination are partsin some composite structure such as a collaboration, then the information channel is likely to be represented by aconnector between them. Or, if the source and target are objects (which are a kind of instance specification), they may berepresented by a link that joins the two, and so on.
Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification (the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.
A substitution is a relationship between two classifiers signifies that the substituting classifier complies with the contract specified by the contract classifier. This implies that instances of the substituting classifier are runtime substitutable where instances of the contract classifier are expected.
A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or operation. A usage is a dependency in which the client requires the presence of the supplier.
Model Guidelines generated by Adocus MetaModelAgent version 4.2.0.007 | Tuesday, 14 February 2017 15:17 |